Metamath Proof Explorer
		
		
		
		Description:  mulgt1d without ax-mulcom .  (Contributed by SN, 26-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sn-mulgt1d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | sn-mulgt1d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | sn-mulgt1d.1 | ⊢ ( 𝜑  →  1  <  𝐴 ) | 
					
						|  |  | sn-mulgt1d.2 | ⊢ ( 𝜑  →  1  <  𝐵 ) | 
				
					|  | Assertion | sn-mulgt1d | ⊢  ( 𝜑  →  1  <  ( 𝐴  ·  𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn-mulgt1d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | sn-mulgt1d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | sn-mulgt1d.1 | ⊢ ( 𝜑  →  1  <  𝐴 ) | 
						
							| 4 |  | sn-mulgt1d.2 | ⊢ ( 𝜑  →  1  <  𝐵 ) | 
						
							| 5 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 6 | 1 2 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 7 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 8 |  | sn-0lt1 | ⊢ 0  <  1 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 10 | 7 5 1 9 3 | lttrd | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 11 | 2 1 10 | sn-ltmulgt11d | ⊢ ( 𝜑  →  ( 1  <  𝐵  ↔  𝐴  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 | 4 11 | mpbid | ⊢ ( 𝜑  →  𝐴  <  ( 𝐴  ·  𝐵 ) ) | 
						
							| 13 | 5 1 6 3 12 | lttrd | ⊢ ( 𝜑  →  1  <  ( 𝐴  ·  𝐵 ) ) |