Metamath Proof Explorer
Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
|
|
Ref |
Expression |
|
Hypotheses |
sn-mulgt1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
sn-mulgt1d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
sn-mulgt1d.1 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
|
|
sn-mulgt1d.2 |
⊢ ( 𝜑 → 1 < 𝐵 ) |
|
Assertion |
sn-mulgt1d |
⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sn-mulgt1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
sn-mulgt1d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
sn-mulgt1d.1 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
4 |
|
sn-mulgt1d.2 |
⊢ ( 𝜑 → 1 < 𝐵 ) |
5 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
6 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
7 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
8 |
|
sn-0lt1 |
⊢ 0 < 1 |
9 |
8
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
10 |
7 5 1 9 3
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐴 ) |
11 |
2 1 10
|
sn-ltmulgt11d |
⊢ ( 𝜑 → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
12 |
4 11
|
mpbid |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 · 𝐵 ) ) |
13 |
5 1 6 3 12
|
lttrd |
⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |