Metamath Proof Explorer


Theorem sn-mulgt1d

Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-mulgt1d.a ( 𝜑𝐴 ∈ ℝ )
sn-mulgt1d.b ( 𝜑𝐵 ∈ ℝ )
sn-mulgt1d.1 ( 𝜑 → 1 < 𝐴 )
sn-mulgt1d.2 ( 𝜑 → 1 < 𝐵 )
Assertion sn-mulgt1d ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sn-mulgt1d.a ( 𝜑𝐴 ∈ ℝ )
2 sn-mulgt1d.b ( 𝜑𝐵 ∈ ℝ )
3 sn-mulgt1d.1 ( 𝜑 → 1 < 𝐴 )
4 sn-mulgt1d.2 ( 𝜑 → 1 < 𝐵 )
5 1red ( 𝜑 → 1 ∈ ℝ )
6 1 2 remulcld ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ )
7 0red ( 𝜑 → 0 ∈ ℝ )
8 sn-0lt1 0 < 1
9 8 a1i ( 𝜑 → 0 < 1 )
10 7 5 1 9 3 lttrd ( 𝜑 → 0 < 𝐴 )
11 2 1 10 sn-ltmulgt11d ( 𝜑 → ( 1 < 𝐵𝐴 < ( 𝐴 · 𝐵 ) ) )
12 4 11 mpbid ( 𝜑𝐴 < ( 𝐴 · 𝐵 ) )
13 5 1 6 3 12 lttrd ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) )