Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-mulgt1d.a | |- ( ph -> A e. RR ) | |
| sn-mulgt1d.b | |- ( ph -> B e. RR ) | ||
| sn-mulgt1d.1 | |- ( ph -> 1 < A ) | ||
| sn-mulgt1d.2 | |- ( ph -> 1 < B ) | ||
| Assertion | sn-mulgt1d | |- ( ph -> 1 < ( A x. B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sn-mulgt1d.a | |- ( ph -> A e. RR ) | |
| 2 | sn-mulgt1d.b | |- ( ph -> B e. RR ) | |
| 3 | sn-mulgt1d.1 | |- ( ph -> 1 < A ) | |
| 4 | sn-mulgt1d.2 | |- ( ph -> 1 < B ) | |
| 5 | 1red | |- ( ph -> 1 e. RR ) | |
| 6 | 1 2 | remulcld | |- ( ph -> ( A x. B ) e. RR ) | 
| 7 | 0red | |- ( ph -> 0 e. RR ) | |
| 8 | sn-0lt1 | |- 0 < 1 | |
| 9 | 8 | a1i | |- ( ph -> 0 < 1 ) | 
| 10 | 7 5 1 9 3 | lttrd | |- ( ph -> 0 < A ) | 
| 11 | 2 1 10 | sn-ltmulgt11d | |- ( ph -> ( 1 < B <-> A < ( A x. B ) ) ) | 
| 12 | 4 11 | mpbid | |- ( ph -> A < ( A x. B ) ) | 
| 13 | 5 1 6 3 12 | lttrd | |- ( ph -> 1 < ( A x. B ) ) |