Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sn-mulgt1d.a | |- ( ph -> A e. RR ) |
|
sn-mulgt1d.b | |- ( ph -> B e. RR ) |
||
sn-mulgt1d.1 | |- ( ph -> 1 < A ) |
||
sn-mulgt1d.2 | |- ( ph -> 1 < B ) |
||
Assertion | sn-mulgt1d | |- ( ph -> 1 < ( A x. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-mulgt1d.a | |- ( ph -> A e. RR ) |
|
2 | sn-mulgt1d.b | |- ( ph -> B e. RR ) |
|
3 | sn-mulgt1d.1 | |- ( ph -> 1 < A ) |
|
4 | sn-mulgt1d.2 | |- ( ph -> 1 < B ) |
|
5 | 1red | |- ( ph -> 1 e. RR ) |
|
6 | 1 2 | remulcld | |- ( ph -> ( A x. B ) e. RR ) |
7 | 0red | |- ( ph -> 0 e. RR ) |
|
8 | sn-0lt1 | |- 0 < 1 |
|
9 | 8 | a1i | |- ( ph -> 0 < 1 ) |
10 | 7 5 1 9 3 | lttrd | |- ( ph -> 0 < A ) |
11 | 2 1 10 | sn-ltmulgt11d | |- ( ph -> ( 1 < B <-> A < ( A x. B ) ) ) |
12 | 4 11 | mpbid | |- ( ph -> A < ( A x. B ) ) |
13 | 5 1 6 3 12 | lttrd | |- ( ph -> 1 < ( A x. B ) ) |