Metamath Proof Explorer


Theorem sn-mulgt1d

Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-mulgt1d.a
|- ( ph -> A e. RR )
sn-mulgt1d.b
|- ( ph -> B e. RR )
sn-mulgt1d.1
|- ( ph -> 1 < A )
sn-mulgt1d.2
|- ( ph -> 1 < B )
Assertion sn-mulgt1d
|- ( ph -> 1 < ( A x. B ) )

Proof

Step Hyp Ref Expression
1 sn-mulgt1d.a
 |-  ( ph -> A e. RR )
2 sn-mulgt1d.b
 |-  ( ph -> B e. RR )
3 sn-mulgt1d.1
 |-  ( ph -> 1 < A )
4 sn-mulgt1d.2
 |-  ( ph -> 1 < B )
5 1red
 |-  ( ph -> 1 e. RR )
6 1 2 remulcld
 |-  ( ph -> ( A x. B ) e. RR )
7 0red
 |-  ( ph -> 0 e. RR )
8 sn-0lt1
 |-  0 < 1
9 8 a1i
 |-  ( ph -> 0 < 1 )
10 7 5 1 9 3 lttrd
 |-  ( ph -> 0 < A )
11 2 1 10 sn-ltmulgt11d
 |-  ( ph -> ( 1 < B <-> A < ( A x. B ) ) )
12 4 11 mpbid
 |-  ( ph -> A < ( A x. B ) )
13 5 1 6 3 12 lttrd
 |-  ( ph -> 1 < ( A x. B ) )