Metamath Proof Explorer


Theorem snunioc

Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Assertion snunioc A*B*ABAAB=AB

Proof

Step Hyp Ref Expression
1 iccid A*AA=A
2 1 3ad2ant1 A*B*ABAA=A
3 2 uneq1d A*B*ABAAAB=AAB
4 simp1 A*B*ABA*
5 simp2 A*B*ABB*
6 xrleid A*AA
7 6 3ad2ant1 A*B*ABAA
8 simp3 A*B*ABAB
9 df-icc .=x*,y*z*|xzzy
10 df-ioc .=x*,y*z*|x<zzy
11 xrltnle A*w*A<w¬wA
12 xrletr w*A*B*wAABwB
13 simpl1 A*A*w*AAA<wA*
14 simpl3 A*A*w*AAA<ww*
15 simprr A*A*w*AAA<wA<w
16 13 14 15 xrltled A*A*w*AAA<wAw
17 16 ex A*A*w*AAA<wAw
18 9 10 11 9 12 17 ixxun A*A*B*AAABAAAB=AB
19 4 4 5 7 8 18 syl32anc A*B*ABAAAB=AB
20 3 19 eqtr3d A*B*ABAAB=AB