Metamath Proof Explorer


Theorem sorpssi

Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssi [⊂]OrABACABCCB

Proof

Step Hyp Ref Expression
1 solin [⊂]OrABACAB[⊂]CB=CC[⊂]B
2 elex CACV
3 2 ad2antll [⊂]OrABACACV
4 brrpssg CVB[⊂]CBC
5 3 4 syl [⊂]OrABACAB[⊂]CBC
6 biidd [⊂]OrABACAB=CB=C
7 elex BABV
8 7 ad2antrl [⊂]OrABACABV
9 brrpssg BVC[⊂]BCB
10 8 9 syl [⊂]OrABACAC[⊂]BCB
11 5 6 10 3orbi123d [⊂]OrABACAB[⊂]CB=CC[⊂]BBCB=CCB
12 1 11 mpbid [⊂]OrABACABCB=CCB
13 sspsstri BCCBBCB=CCB
14 12 13 sylibr [⊂]OrABACABCCB