Metamath Proof Explorer


Theorem sotr2

Description: A transitivity relation. (Read B <_ C and C < D implies B < D .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Assertion sotr2 ROrABACADA¬CRBCRDBRD

Proof

Step Hyp Ref Expression
1 sotric ROrACABACRB¬C=BBRC
2 1 ancom2s ROrABACACRB¬C=BBRC
3 2 3adantr3 ROrABACADACRB¬C=BBRC
4 3 con2bid ROrABACADAC=BBRC¬CRB
5 breq1 C=BCRDBRD
6 5 biimpd C=BCRDBRD
7 6 a1i ROrABACADAC=BCRDBRD
8 sotr ROrABACADABRCCRDBRD
9 8 expd ROrABACADABRCCRDBRD
10 7 9 jaod ROrABACADAC=BBRCCRDBRD
11 4 10 sylbird ROrABACADA¬CRBCRDBRD
12 11 impd ROrABACADA¬CRBCRDBRD