Metamath Proof Explorer


Theorem sotri2

Description: A transitivity relation. (Read A <_ B and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 ROrS
soi.2 RS×S
Assertion sotri2 AS¬BRABRCARC

Proof

Step Hyp Ref Expression
1 soi.1 ROrS
2 soi.2 RS×S
3 2 brel BRCBSCS
4 3 simpld BRCBS
5 sotric ROrSBSASBRA¬B=AARB
6 1 5 mpan BSASBRA¬B=AARB
7 6 con2bid BSASB=AARB¬BRA
8 breq1 B=ABRCARC
9 8 biimpd B=ABRCARC
10 1 2 sotri ARBBRCARC
11 10 ex ARBBRCARC
12 9 11 jaoi B=AARBBRCARC
13 7 12 syl6bir BSAS¬BRABRCARC
14 13 com3r BRCBSAS¬BRAARC
15 4 14 mpand BRCAS¬BRAARC
16 15 3imp231 AS¬BRABRCARC