Metamath Proof Explorer


Theorem specval

Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion specval T:LambdaT=x|¬T-opx·opI:1-1

Proof

Step Hyp Ref Expression
1 cnex V
2 1 rabex x|¬T-opx·opI:1-1V
3 ax-hilex V
4 oveq1 t=Tt-opx·opI=T-opx·opI
5 f1eq1 t-opx·opI=T-opx·opIt-opx·opI:1-1T-opx·opI:1-1
6 4 5 syl t=Tt-opx·opI:1-1T-opx·opI:1-1
7 6 notbid t=T¬t-opx·opI:1-1¬T-opx·opI:1-1
8 7 rabbidv t=Tx|¬t-opx·opI:1-1=x|¬T-opx·opI:1-1
9 df-spec Lambda=tx|¬t-opx·opI:1-1
10 2 3 3 8 9 fvmptmap T:LambdaT=x|¬T-opx·opI:1-1