Metamath Proof Explorer


Theorem spimt

Description: Closed theorem form of spim . (Contributed by NM, 15-Jan-2008) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 21-Mar-2023) Usage of this theorem is discouraged because it depends on ax-13 . (New usage is discouraged.)

Ref Expression
Assertion spimt x ψ x x = y φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 ax6e x x = y
2 exim x x = y φ ψ x x = y x φ ψ
3 1 2 mpi x x = y φ ψ x φ ψ
4 19.35 x φ ψ x φ x ψ
5 3 4 sylib x x = y φ ψ x φ x ψ
6 id x ψ x ψ
7 6 19.9d x ψ x ψ ψ
8 5 7 sylan9r x ψ x x = y φ ψ x φ ψ