Metamath Proof Explorer


Theorem splyval

Description: The symmetric polynomials for a given index I of variables and base ring R . These are the fixed points of the action A which permutes variables. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses splyval.s S = SymGrp I
splyval.p P = Base S
splyval.m M = Base I mPoly R
splyval.a A = d P , f M x h 0 I | finSupp 0 h f x d
splyval.i φ I V
splyval.r φ R W
Assertion splyval Could not format assertion : No typesetting found for |- ( ph -> ( I SymPoly R ) = ( M FixPts A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 splyval.s S = SymGrp I
2 splyval.p P = Base S
3 splyval.m M = Base I mPoly R
4 splyval.a A = d P , f M x h 0 I | finSupp 0 h f x d
5 splyval.i φ I V
6 splyval.r φ R W
7 df-sply Could not format SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) : No typesetting found for |- SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) with typecode |-
8 7 a1i Could not format ( ph -> SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) ) : No typesetting found for |- ( ph -> SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) ) with typecode |-
9 oveq12 i = I r = R i mPoly r = I mPoly R
10 9 fveq2d i = I r = R Base i mPoly r = Base I mPoly R
11 10 3 eqtr4di i = I r = R Base i mPoly r = M
12 fveq2 i = I SymGrp i = SymGrp I
13 12 adantr i = I r = R SymGrp i = SymGrp I
14 13 1 eqtr4di i = I r = R SymGrp i = S
15 14 fveq2d i = I r = R Base SymGrp i = Base S
16 15 2 eqtr4di i = I r = R Base SymGrp i = P
17 oveq2 i = I 0 i = 0 I
18 17 adantr i = I r = R 0 i = 0 I
19 18 rabeqdv i = I r = R h 0 i | finSupp 0 h = h 0 I | finSupp 0 h
20 19 mpteq1d i = I r = R x h 0 i | finSupp 0 h f x d = x h 0 I | finSupp 0 h f x d
21 16 11 20 mpoeq123dv i = I r = R d Base SymGrp i , f Base i mPoly r x h 0 i | finSupp 0 h f x d = d P , f M x h 0 I | finSupp 0 h f x d
22 21 4 eqtr4di i = I r = R d Base SymGrp i , f Base i mPoly r x h 0 i | finSupp 0 h f x d = A
23 11 22 oveq12d Could not format ( ( i = I /\ r = R ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) : No typesetting found for |- ( ( i = I /\ r = R ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) with typecode |-
24 23 adantl Could not format ( ( ph /\ ( i = I /\ r = R ) ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) : No typesetting found for |- ( ( ph /\ ( i = I /\ r = R ) ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) with typecode |-
25 5 elexd φ I V
26 6 elexd φ R V
27 ovexd Could not format ( ph -> ( M FixPts A ) e. _V ) : No typesetting found for |- ( ph -> ( M FixPts A ) e. _V ) with typecode |-
28 8 24 25 26 27 ovmpod Could not format ( ph -> ( I SymPoly R ) = ( M FixPts A ) ) : No typesetting found for |- ( ph -> ( I SymPoly R ) = ( M FixPts A ) ) with typecode |-