Metamath Proof Explorer


Theorem sprmpod

Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 20-Jun-2019)

Ref Expression
Hypotheses sprmpod.1 M=vV,eVxy|xvReyχ
sprmpod.2 φv=Ve=Eχψ
sprmpod.3 φVVEV
sprmpod.4 φxyxVREyθ
sprmpod.5 φxy|θV
Assertion sprmpod φVME=xy|xVREyψ

Proof

Step Hyp Ref Expression
1 sprmpod.1 M=vV,eVxy|xvReyχ
2 sprmpod.2 φv=Ve=Eχψ
3 sprmpod.3 φVVEV
4 sprmpod.4 φxyxVREyθ
5 sprmpod.5 φxy|θV
6 1 a1i φM=vV,eVxy|xvReyχ
7 oveq12 v=Ve=EvRe=VRE
8 7 breqd v=Ve=ExvReyxVREy
9 8 adantl φv=Ve=ExvReyxVREy
10 2 3expb φv=Ve=Eχψ
11 9 10 anbi12d φv=Ve=ExvReyχxVREyψ
12 11 opabbidv φv=Ve=Exy|xvReyχ=xy|xVREyψ
13 3 simpld φVV
14 3 simprd φEV
15 opabbrex xyxVREyθxy|θVxy|xVREyψV
16 4 5 15 syl2anc φxy|xVREyψV
17 6 12 13 14 16 ovmpod φVME=xy|xVREyψ