Metamath Proof Explorer


Theorem sprssspr

Description: The set of all unordered pairs over a given set V is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprssspr PairsVp|abp=ab

Proof

Step Hyp Ref Expression
1 sprval VVPairsV=p|aVbVp=ab
2 r2ex aVbVp=ababaVbVp=ab
3 simpr aVbVp=abp=ab
4 3 2eximi abaVbVp=ababp=ab
5 2 4 sylbi aVbVp=ababp=ab
6 5 ax-gen paVbVp=ababp=ab
7 6 a1i VVpaVbVp=ababp=ab
8 ss2ab p|aVbVp=abp|abp=abpaVbVp=ababp=ab
9 7 8 sylibr VVp|aVbVp=abp|abp=ab
10 1 9 eqsstrd VVPairsVp|abp=ab
11 fvprc ¬VVPairsV=
12 0ss p|abp=ab
13 12 a1i ¬VVp|abp=ab
14 11 13 eqsstrd ¬VVPairsVp|abp=ab
15 10 14 pm2.61i PairsVp|abp=ab