Metamath Proof Explorer


Theorem sprsymrelfv

Description: The value of the function F which maps a subset of the set of pairs over a fixed set V to the relation relating two elements of the set V iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P=𝒫PairsV
sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
sprsymrelf.f F=pPxy|cpc=xy
Assertion sprsymrelfv XPFX=xy|cXc=xy

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P=𝒫PairsV
2 sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
3 sprsymrelf.f F=pPxy|cpc=xy
4 rexeq p=Xcpc=xycXc=xy
5 4 opabbidv p=Xxy|cpc=xy=xy|cXc=xy
6 id XPXP
7 elpwi X𝒫PairsVXPairsV
8 7 1 eleq2s XPXPairsV
9 sprsymrelfvlem XPairsVxy|cXc=xy𝒫V×V
10 8 9 syl XPxy|cXc=xy𝒫V×V
11 3 5 6 10 fvmptd3 XPFX=xy|cXc=xy