Metamath Proof Explorer


Theorem sprvalpw

Description: The set of all unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprvalpw VWPairsV=p𝒫V|aVbVp=ab

Proof

Step Hyp Ref Expression
1 sprval VWPairsV=p|aVbVp=ab
2 prssi aVbVabV
3 eleq1 p=abp𝒫Vab𝒫V
4 prex abV
5 4 elpw ab𝒫VabV
6 3 5 bitrdi p=abp𝒫VabV
7 2 6 syl5ibrcom aVbVp=abp𝒫V
8 7 rexlimivv aVbVp=abp𝒫V
9 8 pm4.71ri aVbVp=abp𝒫VaVbVp=ab
10 9 a1i VWaVbVp=abp𝒫VaVbVp=ab
11 10 abbidv VWp|aVbVp=ab=p|p𝒫VaVbVp=ab
12 df-rab p𝒫V|aVbVp=ab=p|p𝒫VaVbVp=ab
13 11 12 eqtr4di VWp|aVbVp=ab=p𝒫V|aVbVp=ab
14 1 13 eqtrd VWPairsV=p𝒫V|aVbVp=ab