Metamath Proof Explorer


Theorem spthispth

Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion spthispth FSPathsGPFPathsGP

Proof

Step Hyp Ref Expression
1 simpl FTrailsGPFunP-1FTrailsGP
2 funres11 FunP-1FunP1..^F-1
3 2 adantl FTrailsGPFunP-1FunP1..^F-1
4 imain FunP-1P0F1..^F=P0FP1..^F
5 1e0p1 1=0+1
6 5 oveq1i 1..^F=0+1..^F
7 6 ineq2i 0F1..^F=0F0+1..^F
8 0z 0
9 prinfzo0 00F0+1..^F=
10 8 9 ax-mp 0F0+1..^F=
11 7 10 eqtri 0F1..^F=
12 11 imaeq2i P0F1..^F=P
13 ima0 P=
14 12 13 eqtri P0F1..^F=
15 4 14 eqtr3di FunP-1P0FP1..^F=
16 15 adantl FTrailsGPFunP-1P0FP1..^F=
17 1 3 16 3jca FTrailsGPFunP-1FTrailsGPFunP1..^F-1P0FP1..^F=
18 isspth FSPathsGPFTrailsGPFunP-1
19 ispth FPathsGPFTrailsGPFunP1..^F-1P0FP1..^F=
20 17 18 19 3imtr4i FSPathsGPFPathsGP