Metamath Proof Explorer


Theorem sqabsadd

Description: Square of absolute value of sum. Proposition 10-3.7(g) of Gleason p. 133. (Contributed by NM, 21-Jan-2007)

Ref Expression
Assertion sqabsadd ABA+B2=A2+B2+2AB

Proof

Step Hyp Ref Expression
1 cjadd ABA+B=A+B
2 1 oveq2d ABA+BA+B=A+BA+B
3 cjcl AA
4 cjcl BB
5 3 4 anim12i ABAB
6 muladd ABABA+BA+B=AA+BB+AB+AB
7 5 6 mpdan ABA+BA+B=AA+BB+AB+AB
8 2 7 eqtrd ABA+BA+B=AA+BB+AB+AB
9 addcl ABA+B
10 absvalsq A+BA+B2=A+BA+B
11 9 10 syl ABA+B2=A+BA+B
12 absvalsq AA2=AA
13 absvalsq BB2=BB
14 mulcom BBBB=BB
15 4 14 mpdan BBB=BB
16 13 15 eqtrd BB2=BB
17 12 16 oveqan12d ABA2+B2=AA+BB
18 mulcl ABAB
19 4 18 sylan2 ABAB
20 19 addcjd ABAB+AB=2AB
21 cjmul ABAB=AB
22 4 21 sylan2 ABAB=AB
23 cjcj BB=B
24 23 adantl ABB=B
25 24 oveq2d ABAB=AB
26 22 25 eqtrd ABAB=AB
27 26 oveq2d ABAB+AB=AB+AB
28 20 27 eqtr3d AB2AB=AB+AB
29 17 28 oveq12d ABA2+B2+2AB=AA+BB+AB+AB
30 8 11 29 3eqtr4d ABA+B2=A2+B2+2AB