Metamath Proof Explorer


Theorem srngcl

Description: The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙=*R
srngcl.b B=BaseR
Assertion srngcl R*-RingXB˙XB

Proof

Step Hyp Ref Expression
1 srngcl.i ˙=*R
2 srngcl.b B=BaseR
3 eqid 𝑟𝑓R=𝑟𝑓R
4 2 1 3 stafval XB𝑟𝑓RX=˙X
5 4 adantl R*-RingXB𝑟𝑓RX=˙X
6 3 2 srngf1o R*-Ring𝑟𝑓R:B1-1 ontoB
7 f1of 𝑟𝑓R:B1-1 ontoB𝑟𝑓R:BB
8 6 7 syl R*-Ring𝑟𝑓R:BB
9 8 ffvelcdmda R*-RingXB𝑟𝑓RXB
10 5 9 eqeltrrd R*-RingXB˙XB