Metamath Proof Explorer


Theorem ss2rabd

Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 , ax-11 , ax-12 over using ss2rab and sylibr . (Contributed by SN, 4-Feb-2026)

Ref Expression
Hypothesis ss2rabd.1 φ x A ψ χ
Assertion ss2rabd φ x A | ψ x A | χ

Proof

Step Hyp Ref Expression
1 ss2rabd.1 φ x A ψ χ
2 df-ral x A ψ χ x x A ψ χ
3 imdistan x A ψ χ x A ψ x A χ
4 3 albii x x A ψ χ x x A ψ x A χ
5 2 4 bitri x A ψ χ x x A ψ x A χ
6 1 5 sylib φ x x A ψ x A χ
7 ss2abim x x A ψ x A χ x | x A ψ x | x A χ
8 6 7 syl φ x | x A ψ x | x A χ
9 df-rab x A | ψ = x | x A ψ
10 df-rab x A | χ = x | x A χ
11 8 9 10 3sstr4g φ x A | ψ x A | χ