| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ss2rabd.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) |
| 3 |
|
imdistan |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 5 |
2 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 6 |
1 5
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 7 |
|
ss2abim |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) |
| 9 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
| 10 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } |
| 11 |
8 9 10
|
3sstr4g |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |