Metamath Proof Explorer


Theorem ss2rabd

Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 , ax-11 , ax-12 over using ss2rab and sylibr . (Contributed by SN, 4-Feb-2026)

Ref Expression
Hypothesis ss2rabd.1 ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
Assertion ss2rabd ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 ss2rabd.1 ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
2 df-ral ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 imdistan ( ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
5 2 4 bitri ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
6 1 5 sylib ( 𝜑 → ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
7 ss2abim ( ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
8 6 7 syl ( 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
9 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
10 df-rab { 𝑥𝐴𝜒 } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) }
11 8 9 10 3sstr4g ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )