Metamath Proof Explorer


Theorem ssconb

Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion ssconb ACBCACBBCA

Proof

Step Hyp Ref Expression
1 ssel ACxAxC
2 ssel BCxBxC
3 pm5.1 xAxCxBxCxAxCxBxC
4 1 2 3 syl2an ACBCxAxCxBxC
5 con2b xA¬xBxB¬xA
6 5 a1i ACBCxA¬xBxB¬xA
7 4 6 anbi12d ACBCxAxCxA¬xBxBxCxB¬xA
8 jcab xAxC¬xBxAxCxA¬xB
9 jcab xBxC¬xAxBxCxB¬xA
10 7 8 9 3bitr4g ACBCxAxC¬xBxBxC¬xA
11 eldif xCBxC¬xB
12 11 imbi2i xAxCBxAxC¬xB
13 eldif xCAxC¬xA
14 13 imbi2i xBxCAxBxC¬xA
15 10 12 14 3bitr4g ACBCxAxCBxBxCA
16 15 albidv ACBCxxAxCBxxBxCA
17 dfss2 ACBxxAxCB
18 dfss2 BCAxxBxCA
19 16 17 18 3bitr4g ACBCACBBCA