Metamath Proof Explorer
		
		
		
		Description:  Subset preserves disjointness.  Deduction form of ssdisj .
         (Contributed by Zhi Wang, 7-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ssdisjd.1 |  | 
					
						|  |  | ssdisjd.2 |  | 
				
					|  | Assertion | ssdisjd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdisjd.1 |  | 
						
							| 2 |  | ssdisjd.2 |  | 
						
							| 3 | 1 | ssrind |  | 
						
							| 4 |  | sseq0 |  | 
						
							| 5 | 3 2 4 | syl2anc |  |