Metamath Proof Explorer
Description: Subset preserves disjointness. Deduction form of ssdisj .
(Contributed by Zhi Wang, 7-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ssdisjd.1 |
|
|
|
ssdisjd.2 |
|
|
Assertion |
ssdisjd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssdisjd.1 |
|
2 |
|
ssdisjd.2 |
|
3 |
1
|
ssrind |
|
4 |
|
sseq0 |
|
5 |
3 2 4
|
syl2anc |
|