Metamath Proof Explorer


Theorem sseqtrrid

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sseqtrrid.1 BA
sseqtrrid.2 φC=A
Assertion sseqtrrid φBC

Proof

Step Hyp Ref Expression
1 sseqtrrid.1 BA
2 sseqtrrid.2 φC=A
3 2 eqcomd φA=C
4 1 3 sseqtrid φBC