Metamath Proof Explorer


Theorem ssin0

Description: If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion ssin0 AB=CADBCD=

Proof

Step Hyp Ref Expression
1 ss2in CADBCDAB
2 1 3adant1 AB=CADBCDAB
3 eqimss AB=AB
4 3 3ad2ant1 AB=CADBAB
5 2 4 sstrd AB=CADBCD
6 ss0 CDCD=
7 5 6 syl AB=CADBCD=