Metamath Proof Explorer


Theorem ssltsep

Description: The separation property of surreal set less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion ssltsep A s B x A y B x < s y

Proof

Step Hyp Ref Expression
1 brsslt A s B A V B V A No B No x A y B x < s y
2 simpr3 A V B V A No B No x A y B x < s y x A y B x < s y
3 1 2 sylbi A s B x A y B x < s y