Metamath Proof Explorer


Theorem sspba

Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspba.x X=BaseSetU
sspba.y Y=BaseSetW
sspba.h H=SubSpU
Assertion sspba UNrmCVecWHYX

Proof

Step Hyp Ref Expression
1 sspba.x X=BaseSetU
2 sspba.y Y=BaseSetW
3 sspba.h H=SubSpU
4 eqid +vU=+vU
5 eqid +vW=+vW
6 eqid 𝑠OLDU=𝑠OLDU
7 eqid 𝑠OLDW=𝑠OLDW
8 eqid normCVU=normCVU
9 eqid normCVW=normCVW
10 4 5 6 7 8 9 3 isssp UNrmCVecWHWNrmCVec+vW+vU𝑠OLDW𝑠OLDUnormCVWnormCVU
11 10 simplbda UNrmCVecWH+vW+vU𝑠OLDW𝑠OLDUnormCVWnormCVU
12 11 simp1d UNrmCVecWH+vW+vU
13 rnss +vW+vUran+vWran+vU
14 12 13 syl UNrmCVecWHran+vWran+vU
15 2 5 bafval Y=ran+vW
16 1 4 bafval X=ran+vU
17 14 15 16 3sstr4g UNrmCVecWHYX