Metamath Proof Explorer


Theorem sstp

Description: The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion sstp ABCDA=A=BA=CA=BCA=DA=BDA=CDA=BCD

Proof

Step Hyp Ref Expression
1 df-tp BCD=BCD
2 1 sseq2i ABCDABCD
3 0ss A
4 3 biantrur ABCDAABCD
5 ssunsn2 AABCDAABCDAABCD
6 3 biantrur ABCAABC
7 sspr ABCA=A=BA=CA=BC
8 6 7 bitr3i AABCA=A=BA=CA=BC
9 uncom D=D
10 un0 D=D
11 9 10 eqtri D=D
12 11 sseq1i DADA
13 uncom BCD=DBC
14 13 sseq2i ABCDADBC
15 12 14 anbi12i DAABCDDAADBC
16 ssunpr DAADBCA=DA=DBA=DCA=DBC
17 uncom DB=BD
18 df-pr BD=BD
19 17 18 eqtr4i DB=BD
20 19 eqeq2i A=DBA=BD
21 20 orbi2i A=DA=DBA=DA=BD
22 uncom DC=CD
23 df-pr CD=CD
24 22 23 eqtr4i DC=CD
25 24 eqeq2i A=DCA=CD
26 1 13 eqtr2i DBC=BCD
27 26 eqeq2i A=DBCA=BCD
28 25 27 orbi12i A=DCA=DBCA=CDA=BCD
29 21 28 orbi12i A=DA=DBA=DCA=DBCA=DA=BDA=CDA=BCD
30 15 16 29 3bitri DAABCDA=DA=BDA=CDA=BCD
31 8 30 orbi12i AABCDAABCDA=A=BA=CA=BCA=DA=BDA=CDA=BCD
32 5 31 bitri AABCDA=A=BA=CA=BCA=DA=BDA=CDA=BCD
33 2 4 32 3bitri ABCDA=A=BA=CA=BCA=DA=BDA=CDA=BCD