Metamath Proof Explorer


Theorem structcnvcnv

Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Assertion structcnvcnv FStructXF-1-1=F

Proof

Step Hyp Ref Expression
1 0nelxp ¬V×V
2 cnvcnv F-1-1=FV×V
3 inss2 FV×VV×V
4 2 3 eqsstri F-1-1V×V
5 4 sseli F-1-1V×V
6 1 5 mto ¬F-1-1
7 disjsn F-1-1=¬F-1-1
8 6 7 mpbir F-1-1=
9 cnvcnvss F-1-1F
10 reldisj F-1-1FF-1-1=F-1-1F
11 9 10 ax-mp F-1-1=F-1-1F
12 8 11 mpbi F-1-1F
13 12 a1i FStructXF-1-1F
14 structn0fun FStructXFunF
15 funrel FunFRelF
16 14 15 syl FStructXRelF
17 dfrel2 RelFF-1-1=F
18 16 17 sylib FStructXF-1-1=F
19 difss FF
20 cnvss FFF-1F-1
21 cnvss F-1F-1F-1-1F-1-1
22 19 20 21 mp2b F-1-1F-1-1
23 18 22 eqsstrrdi FStructXFF-1-1
24 13 23 eqssd FStructXF-1-1=F