Metamath Proof Explorer


Theorem sub4

Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007)

Ref Expression
Assertion sub4 ABCDA-B-CD=A-C-BD

Proof

Step Hyp Ref Expression
1 addcom BCB+C=C+B
2 1 ad2ant2lr ABCDB+C=C+B
3 2 oveq2d ABCDA+D-B+C=A+D-C+B
4 subadd4 ABCDA-B-CD=A+D-B+C
5 subadd4 ACBDA-C-BD=A+D-C+B
6 5 an4s ABCDA-C-BD=A+D-C+B
7 3 4 6 3eqtr4d ABCDA-B-CD=A-C-BD