| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcidcl.j |  | 
						
							| 2 |  | subcidcl.2 |  | 
						
							| 3 |  | subcidcl.x |  | 
						
							| 4 |  | subccocl.o |  | 
						
							| 5 |  | subccocl.y |  | 
						
							| 6 |  | subccocl.z |  | 
						
							| 7 |  | subccocl.f |  | 
						
							| 8 |  | subccocl.g |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | subcrcl |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 9 10 4 12 2 | issubc2 |  | 
						
							| 14 | 1 13 | mpbid |  | 
						
							| 15 | 14 | simprd |  | 
						
							| 16 | 5 | adantr |  | 
						
							| 17 | 6 | ad2antrr |  | 
						
							| 18 | 7 | ad3antrrr |  | 
						
							| 19 |  | simpllr |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 | 19 20 | oveq12d |  | 
						
							| 22 | 18 21 | eleqtrrd |  | 
						
							| 23 | 8 | ad4antr |  | 
						
							| 24 |  | simpllr |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 | 24 25 | oveq12d |  | 
						
							| 27 | 23 26 | eleqtrrd |  | 
						
							| 28 |  | simp-5r |  | 
						
							| 29 |  | simp-4r |  | 
						
							| 30 | 28 29 | opeq12d |  | 
						
							| 31 |  | simpllr |  | 
						
							| 32 | 30 31 | oveq12d |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 | 32 33 34 | oveq123d |  | 
						
							| 36 | 28 31 | oveq12d |  | 
						
							| 37 | 35 36 | eleq12d |  | 
						
							| 38 | 27 37 | rspcdv |  | 
						
							| 39 | 22 38 | rspcimdv |  | 
						
							| 40 | 17 39 | rspcimdv |  | 
						
							| 41 | 16 40 | rspcimdv |  | 
						
							| 42 | 41 | adantld |  | 
						
							| 43 | 3 42 | rspcimdv |  | 
						
							| 44 | 15 43 | mpd |  |