Metamath Proof Explorer


Theorem subeluzsub

Description: Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022)

Ref Expression
Assertion subeluzsub MNKMKMN

Proof

Step Hyp Ref Expression
1 eluzelz NKN
2 zsubcl MNMN
3 1 2 sylan2 MNKMN
4 eluzel2 NKK
5 zsubcl MKMK
6 4 5 sylan2 MNKMK
7 4 zred NKK
8 7 adantl MNKK
9 1 zred NKN
10 9 adantl MNKN
11 zre MM
12 11 adantr MNKM
13 eluzle NKKN
14 13 adantl MNKKN
15 8 10 12 14 lesub2dd MNKMNMK
16 eluz2 MKMNMNMKMNMK
17 3 6 15 16 syl3anbrc MNKMKMN