Metamath Proof Explorer


Theorem suble

Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005)

Ref Expression
Assertion suble ABCABCACB

Proof

Step Hyp Ref Expression
1 lesubadd ABCABCAC+B
2 lesubadd2 ACBACBAC+B
3 2 3com23 ABCACBAC+B
4 1 3 bitr4d ABCABCACB