Metamath Proof Explorer


Theorem suble0

Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion suble0 ABAB0AB

Proof

Step Hyp Ref Expression
1 0re 0
2 suble AB0AB0A0B
3 1 2 mp3an3 ABAB0A0B
4 simpl ABA
5 4 recnd ABA
6 5 subid1d ABA0=A
7 6 breq1d ABA0BAB
8 3 7 bitrd ABAB0AB