Metamath Proof Explorer


Theorem suble0d

Description: Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
Assertion suble0d φAB0AB

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 suble0 ABAB0AB
4 1 2 3 syl2anc φAB0AB