Metamath Proof Explorer


Theorem submgmid

Description: Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmss.b B=BaseM
Assertion submgmid MMgmBSubMgmM

Proof

Step Hyp Ref Expression
1 submgmss.b B=BaseM
2 ssidd MMgmBB
3 1 ressid MMgmM𝑠B=M
4 id MMgmMMgm
5 3 4 eqeltrd MMgmM𝑠BMgm
6 eqid M𝑠B=M𝑠B
7 1 6 issubmgm2 MMgmBSubMgmMBBM𝑠BMgm
8 2 5 7 mpbir2and MMgmBSubMgmM