Metamath Proof Explorer


Theorem subresre

Description: Subtraction restricted to the reals. (Contributed by SN, 5-May-2024)

Ref Expression
Assertion subresre -=2

Proof

Step Hyp Ref Expression
1 resubeqsub xyx-y=xy
2 1 3adant1 xyx-y=xy
3 ax-resscn
4 3 a1i
5 resubf -:2
6 5 a1i -:2
7 sn-subf :×
8 7 a1i :×
9 2 4 6 8 oprres -=2
10 9 mptru -=2