Metamath Proof Explorer


Theorem subrfv

Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion subrfv AEBDCA-rBC=ACBC

Proof

Step Hyp Ref Expression
1 subrval AEBDA-rB=xAxBx
2 1 fveq1d AEBDA-rBC=xAxBxC
3 fveq2 x=CAx=AC
4 fveq2 x=CBx=BC
5 3 4 oveq12d x=CAxBx=ACBC
6 eqid xAxBx=xAxBx
7 ovex ACBCV
8 5 6 7 fvmpt CxAxBxC=ACBC
9 2 8 sylan9eq AEBDCA-rBC=ACBC
10 9 3impa AEBDCA-rBC=ACBC