Metamath Proof Explorer


Theorem subrgvr1cl

Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses subrgvr1.x X=var1R
subrgvr1.r φTSubRingR
subrgvr1.h H=R𝑠T
subrgvr1cl.u U=Poly1H
subrgvr1cl.b B=BaseU
Assertion subrgvr1cl φXB

Proof

Step Hyp Ref Expression
1 subrgvr1.x X=var1R
2 subrgvr1.r φTSubRingR
3 subrgvr1.h H=R𝑠T
4 subrgvr1cl.u U=Poly1H
5 subrgvr1cl.b B=BaseU
6 1 vr1val X=1𝑜mVarR
7 eqid 1𝑜mVarR=1𝑜mVarR
8 1on 1𝑜On
9 8 a1i φ1𝑜On
10 eqid 1𝑜mPolyH=1𝑜mPolyH
11 eqid PwSer1H=PwSer1H
12 4 11 5 ply1bas B=Base1𝑜mPolyH
13 7 9 2 3 10 12 subrgmvrf φ1𝑜mVarR:1𝑜B
14 0lt1o 1𝑜
15 ffvelcdm 1𝑜mVarR:1𝑜B1𝑜1𝑜mVarRB
16 13 14 15 sylancl φ1𝑜mVarRB
17 6 16 eqeltrid φXB