Metamath Proof Explorer


Theorem subrngringnsg

Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025)

Ref Expression
Assertion subrngringnsg Could not format assertion : No typesetting found for |- ( A e. ( SubRng ` R ) -> A e. ( NrmSGrp ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subrngsubg Could not format ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) with typecode |-
2 subrngrcl Could not format ( A e. ( SubRng ` R ) -> R e. Rng ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> R e. Rng ) with typecode |-
3 rngabl RRngRAbel
4 2 3 syl Could not format ( A e. ( SubRng ` R ) -> R e. Abel ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> R e. Abel ) with typecode |-
5 4 3anim1i Could not format ( ( A e. ( SubRng ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) with typecode |-
6 5 3expb Could not format ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) with typecode |-
7 eqid BaseR=BaseR
8 eqid +R=+R
9 7 8 ablcom RAbelxBaseRyBaseRx+Ry=y+Rx
10 6 9 syl Could not format ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) ) with typecode |-
11 10 eleq1d Could not format ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A <-> ( y ( +g ` R ) x ) e. A ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A <-> ( y ( +g ` R ) x ) e. A ) ) with typecode |-
12 11 biimpd Could not format ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) with typecode |-
13 12 ralrimivva Could not format ( A e. ( SubRng ` R ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) with typecode |-
14 7 8 isnsg2 ANrmSGrpRASubGrpRxBaseRyBaseRx+RyAy+RxA
15 1 13 14 sylanbrc Could not format ( A e. ( SubRng ` R ) -> A e. ( NrmSGrp ` R ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> A e. ( NrmSGrp ` R ) ) with typecode |-