Metamath Proof Explorer


Theorem subsin

Description: Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion subsin ABsinAsinB=2cosA+B2sinAB2

Proof

Step Hyp Ref Expression
1 halfaddsubcl ABA+B2AB2
2 coscl A+B2cosA+B2
3 sincl AB2sinAB2
4 mulcl cosA+B2sinAB2cosA+B2sinAB2
5 2 3 4 syl2an A+B2AB2cosA+B2sinAB2
6 1 5 syl ABcosA+B2sinAB2
7 6 2timesd AB2cosA+B2sinAB2=cosA+B2sinAB2+cosA+B2sinAB2
8 sinadd A+B2AB2sinA+B2+AB2=sinA+B2cosAB2+cosA+B2sinAB2
9 sinsub A+B2AB2sinA+B2AB2=sinA+B2cosAB2cosA+B2sinAB2
10 8 9 oveq12d A+B2AB2sinA+B2+AB2sinA+B2AB2=sinA+B2cosAB2+cosA+B2sinAB2-sinA+B2cosAB2cosA+B2sinAB2
11 1 10 syl ABsinA+B2+AB2sinA+B2AB2=sinA+B2cosAB2+cosA+B2sinAB2-sinA+B2cosAB2cosA+B2sinAB2
12 sincl A+B2sinA+B2
13 coscl AB2cosAB2
14 mulcl sinA+B2cosAB2sinA+B2cosAB2
15 12 13 14 syl2an A+B2AB2sinA+B2cosAB2
16 1 15 syl ABsinA+B2cosAB2
17 16 6 6 pnncand ABsinA+B2cosAB2+cosA+B2sinAB2-sinA+B2cosAB2cosA+B2sinAB2=cosA+B2sinAB2+cosA+B2sinAB2
18 11 17 eqtrd ABsinA+B2+AB2sinA+B2AB2=cosA+B2sinAB2+cosA+B2sinAB2
19 halfaddsub ABA+B2+AB2=AA+B2AB2=B
20 19 simpld ABA+B2+AB2=A
21 20 fveq2d ABsinA+B2+AB2=sinA
22 19 simprd ABA+B2AB2=B
23 22 fveq2d ABsinA+B2AB2=sinB
24 21 23 oveq12d ABsinA+B2+AB2sinA+B2AB2=sinAsinB
25 7 18 24 3eqtr2rd ABsinAsinB=2cosA+B2sinAB2