Metamath Proof Explorer


Theorem sucdom

Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion sucdom AωABsucAB

Proof

Step Hyp Ref Expression
1 sucdom2 ABsucAB
2 nnfi AωAFin
3 php4 AωAsucA
4 sdomdomtrfi AFinAsucAsucABAB
5 4 3expia AFinAsucAsucABAB
6 2 3 5 syl2anc AωsucABAB
7 1 6 impbid2 AωABsucAB