Metamath Proof Explorer


Theorem sumnul

Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z=M
isumcl.2 φM
isumcl.3 φkZFk=A
isumcl.4 φkZA
sumnul.5 φ¬seqM+Fdom
Assertion sumnul φkZA=

Proof

Step Hyp Ref Expression
1 isumcl.1 Z=M
2 isumcl.2 φM
3 isumcl.3 φkZFk=A
4 isumcl.4 φkZA
5 sumnul.5 φ¬seqM+Fdom
6 1 2 3 4 isum φkZA=seqM+F
7 ndmfv ¬seqM+FdomseqM+F=
8 5 7 syl φseqM+F=
9 6 8 eqtrd φkZA=