Metamath Proof Explorer


Theorem supp0cosupp0

Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion supp0cosupp0 FVGWFsuppZ=FGsuppZ=

Proof

Step Hyp Ref Expression
1 suppco FVGWFGsuppZ=G-1FsuppZ
2 imaeq2 FsuppZ=G-1FsuppZ=G-1
3 ima0 G-1=
4 2 3 eqtrdi FsuppZ=G-1FsuppZ=
5 1 4 sylan9eq FVGWFsuppZ=FGsuppZ=
6 5 ex FVGWFsuppZ=FGsuppZ=