Metamath Proof Explorer


Theorem suppun

Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019)

Ref Expression
Hypothesis suppun.g φGV
Assertion suppun φFsuppZFGsuppZ

Proof

Step Hyp Ref Expression
1 suppun.g φGV
2 ssun1 F-1VZF-1VZG-1VZ
3 cnvun FG-1=F-1G-1
4 3 imaeq1i FG-1VZ=F-1G-1VZ
5 imaundir F-1G-1VZ=F-1VZG-1VZ
6 4 5 eqtri FG-1VZ=F-1VZG-1VZ
7 2 6 sseqtrri F-1VZFG-1VZ
8 7 a1i FVZVφF-1VZFG-1VZ
9 suppimacnv FVZVFsuppZ=F-1VZ
10 9 adantr FVZVφFsuppZ=F-1VZ
11 unexg FVGVFGV
12 11 adantlr FVZVGVFGV
13 1 12 sylan2 FVZVφFGV
14 simplr FVZVφZV
15 suppimacnv FGVZVFGsuppZ=FG-1VZ
16 13 14 15 syl2anc FVZVφFGsuppZ=FG-1VZ
17 8 10 16 3sstr4d FVZVφFsuppZFGsuppZ
18 17 ex FVZVφFsuppZFGsuppZ
19 supp0prc ¬FVZVFsuppZ=
20 0ss FGsuppZ
21 19 20 eqsstrdi ¬FVZVFsuppZFGsuppZ
22 21 a1d ¬FVZVφFsuppZFGsuppZ
23 18 22 pm2.61i φFsuppZFGsuppZ