Metamath Proof Explorer


Theorem suprubd

Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprubd.1 φA
suprubd.2 φA
suprubd.3 φxyAyx
suprubd.4 φBA
Assertion suprubd φBsupA<

Proof

Step Hyp Ref Expression
1 suprubd.1 φA
2 suprubd.2 φA
3 suprubd.3 φxyAyx
4 suprubd.4 φBA
5 suprub AAxyAyxBABsupA<
6 1 2 3 4 5 syl31anc φBsupA<