Metamath Proof Explorer


Theorem supval2

Description: Alternate expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016) (Revised by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Hypothesis supmo.1 φROrA
Assertion supval2 φsupBAR=ιxA|yB¬xRyyAyRxzByRz

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 df-sup supBAR=xA|yB¬xRyyAyRxzByRz
3 simpl ROrAxAyB¬xRyyAyRxzByRzROrA
4 simpr ROrAxAyB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
5 3 4 supeu ROrAxAyB¬xRyyAyRxzByRz∃!xAyB¬xRyyAyRxzByRz
6 riotauni ∃!xAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRz=xA|yB¬xRyyAyRxzByRz
7 5 6 syl ROrAxAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRz=xA|yB¬xRyyAyRxzByRz
8 2 7 eqtr4id ROrAxAyB¬xRyyAyRxzByRzsupBAR=ιxA|yB¬xRyyAyRxzByRz
9 rabn0 xA|yB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
10 9 necon1bbii ¬xAyB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz=
11 10 biimpi ¬xAyB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz=
12 11 unieqd ¬xAyB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz=
13 uni0 =
14 12 13 eqtrdi ¬xAyB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz=
15 2 14 eqtrid ¬xAyB¬xRyyAyRxzByRzsupBAR=
16 reurex ∃!xAyB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
17 riotaund ¬∃!xAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRz=
18 16 17 nsyl5 ¬xAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRz=
19 15 18 eqtr4d ¬xAyB¬xRyyAyRxzByRzsupBAR=ιxA|yB¬xRyyAyRxzByRz
20 19 adantl ROrA¬xAyB¬xRyyAyRxzByRzsupBAR=ιxA|yB¬xRyyAyRxzByRz
21 8 20 pm2.61dan ROrAsupBAR=ιxA|yB¬xRyyAyRxzByRz
22 1 21 syl φsupBAR=ιxA|yB¬xRyyAyRxzByRz