Metamath Proof Explorer


Theorem swapfval

Description: Value of the swap functor. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
swapfval.s S = C × c D
swapfval.b B = Base S
swapfval.h φ H = Hom S
Assertion swapfval Could not format assertion : No typesetting found for |- ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 swapfval.s S = C × c D
4 swapfval.b B = Base S
5 swapfval.h φ H = Hom S
6 df-swapf Could not format swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) : No typesetting found for |- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) with typecode |-
7 6 a1i Could not format ( ph -> swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) ) : No typesetting found for |- ( ph -> swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) ) with typecode |-
8 ovexd φ c = C d = D c × c d V
9 simprl φ c = C d = D c = C
10 simprr φ c = C d = D d = D
11 9 10 oveq12d φ c = C d = D c × c d = C × c D
12 11 3 eqtr4di φ c = C d = D c × c d = S
13 fvexd φ c = C d = D s = S Base s V
14 simpr φ c = C d = D s = S s = S
15 14 fveq2d φ c = C d = D s = S Base s = Base S
16 15 4 eqtr4di φ c = C d = D s = S Base s = B
17 fvexd φ c = C d = D s = S b = B Hom s V
18 simplr φ c = C d = D s = S b = B s = S
19 18 fveq2d φ c = C d = D s = S b = B Hom s = Hom S
20 5 ad3antrrr φ c = C d = D s = S b = B H = Hom S
21 19 20 eqtr4d φ c = C d = D s = S b = B Hom s = H
22 simplr φ c = C d = D s = S b = B h = H b = B
23 22 mpteq1d φ c = C d = D s = S b = B h = H x b x -1 = x B x -1
24 simpr φ c = C d = D s = S b = B h = H h = H
25 24 oveqd φ c = C d = D s = S b = B h = H u h v = u H v
26 25 mpteq1d φ c = C d = D s = S b = B h = H f u h v f -1 = f u H v f -1
27 22 22 26 mpoeq123dv φ c = C d = D s = S b = B h = H u b , v b f u h v f -1 = u B , v B f u H v f -1
28 23 27 opeq12d φ c = C d = D s = S b = B h = H x b x -1 u b , v b f u h v f -1 = x B x -1 u B , v B f u H v f -1
29 17 21 28 csbied2 φ c = C d = D s = S b = B Hom s / h x b x -1 u b , v b f u h v f -1 = x B x -1 u B , v B f u H v f -1
30 13 16 29 csbied2 φ c = C d = D s = S Base s / b Hom s / h x b x -1 u b , v b f u h v f -1 = x B x -1 u B , v B f u H v f -1
31 8 12 30 csbied2 φ c = C d = D c × c d / s Base s / b Hom s / h x b x -1 u b , v b f u h v f -1 = x B x -1 u B , v B f u H v f -1
32 1 elexd φ C V
33 2 elexd φ D V
34 opex x B x -1 u B , v B f u H v f -1 V
35 34 a1i φ x B x -1 u B , v B f u H v f -1 V
36 7 31 32 33 35 ovmpod Could not format ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) with typecode |-