Metamath Proof Explorer


Theorem swoord1

Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014)

Ref Expression
Hypotheses swoer.1 R=X×X<˙<˙-1
swoer.2 φyXzXy<˙z¬z<˙y
swoer.3 φxXyXzXx<˙yx<˙zz<˙y
swoord.4 φBX
swoord.5 φCX
swoord.6 φARB
Assertion swoord1 φA<˙CB<˙C

Proof

Step Hyp Ref Expression
1 swoer.1 R=X×X<˙<˙-1
2 swoer.2 φyXzXy<˙z¬z<˙y
3 swoer.3 φxXyXzXx<˙yx<˙zz<˙y
4 swoord.4 φBX
5 swoord.5 φCX
6 swoord.6 φARB
7 id φφ
8 difss X×X<˙<˙-1X×X
9 1 8 eqsstri RX×X
10 9 ssbri ARBAX×XB
11 df-br AX×XBABX×X
12 opelxp1 ABX×XAX
13 11 12 sylbi AX×XBAX
14 6 10 13 3syl φAX
15 3 swopolem φAXCXBXA<˙CA<˙BB<˙C
16 7 14 5 4 15 syl13anc φA<˙CA<˙BB<˙C
17 1 brdifun AXBXARB¬A<˙BB<˙A
18 14 4 17 syl2anc φARB¬A<˙BB<˙A
19 6 18 mpbid φ¬A<˙BB<˙A
20 orc A<˙BA<˙BB<˙A
21 19 20 nsyl φ¬A<˙B
22 biorf ¬A<˙BB<˙CA<˙BB<˙C
23 21 22 syl φB<˙CA<˙BB<˙C
24 16 23 sylibrd φA<˙CB<˙C
25 3 swopolem φBXCXAXB<˙CB<˙AA<˙C
26 7 4 5 14 25 syl13anc φB<˙CB<˙AA<˙C
27 olc B<˙AA<˙BB<˙A
28 19 27 nsyl φ¬B<˙A
29 biorf ¬B<˙AA<˙CB<˙AA<˙C
30 28 29 syl φA<˙CB<˙AA<˙C
31 26 30 sylibrd φB<˙CA<˙C
32 24 31 impbid φA<˙CB<˙C