Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Product Sigma-Algebra
sxuni
Next ⟩
elsx
Metamath Proof Explorer
Ascii
Unicode
Theorem
sxuni
Description:
The base set of a product sigma-algebra.
(Contributed by
Thierry Arnoux
, 1-Jun-2017)
Ref
Expression
Assertion
sxuni
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
⋃
S
×
⋃
T
=
⋃
S
×
s
T
Proof
Step
Hyp
Ref
Expression
1
sxsigon
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
S
×
s
T
∈
sigAlgebra
⁡
⋃
S
×
⋃
T
2
issgon
⊢
S
×
s
T
∈
sigAlgebra
⁡
⋃
S
×
⋃
T
↔
S
×
s
T
∈
⋃
ran
⁡
sigAlgebra
∧
⋃
S
×
⋃
T
=
⋃
S
×
s
T
3
2
simprbi
⊢
S
×
s
T
∈
sigAlgebra
⁡
⋃
S
×
⋃
T
→
⋃
S
×
⋃
T
=
⋃
S
×
s
T
4
1
3
syl
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
⋃
S
×
⋃
T
=
⋃
S
×
s
T