Metamath Proof Explorer


Theorem sxuni

Description: The base set of a product sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Assertion sxuni SransigAlgebraTransigAlgebraS×T=S×sT

Proof

Step Hyp Ref Expression
1 sxsigon SransigAlgebraTransigAlgebraS×sTsigAlgebraS×T
2 issgon S×sTsigAlgebraS×TS×sTransigAlgebraS×T=S×sT
3 2 simprbi S×sTsigAlgebraS×TS×T=S×sT
4 1 3 syl SransigAlgebraTransigAlgebraS×T=S×sT