Metamath Proof Explorer


Theorem syl2an2

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)

Ref Expression
Hypotheses syl2an2.1 φψ
syl2an2.2 χφθ
syl2an2.3 ψθτ
Assertion syl2an2 χφτ

Proof

Step Hyp Ref Expression
1 syl2an2.1 φψ
2 syl2an2.2 χφθ
3 syl2an2.3 ψθτ
4 1 adantl χφψ
5 4 2 3 syl2anc χφτ