Metamath Proof Explorer


Theorem sylan2br

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2br.1 χφ
sylan2br.2 ψχθ
Assertion sylan2br ψφθ

Proof

Step Hyp Ref Expression
1 sylan2br.1 χφ
2 sylan2br.2 ψχθ
3 1 biimpri φχ
4 3 2 sylan2 ψφθ