Metamath Proof Explorer


Theorem t0sep

Description: Any two topologically indistinguishable points in a T_0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis ist0.1 X=J
Assertion t0sep JKol2AXBXxJAxBxA=B

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 1 ist0 JKol2JTopyXzXxJyxzxy=z
3 2 simprbi JKol2yXzXxJyxzxy=z
4 eleq1 y=AyxAx
5 4 bibi1d y=AyxzxAxzx
6 5 ralbidv y=AxJyxzxxJAxzx
7 eqeq1 y=Ay=zA=z
8 6 7 imbi12d y=AxJyxzxy=zxJAxzxA=z
9 eleq1 z=BzxBx
10 9 bibi2d z=BAxzxAxBx
11 10 ralbidv z=BxJAxzxxJAxBx
12 eqeq2 z=BA=zA=B
13 11 12 imbi12d z=BxJAxzxA=zxJAxBxA=B
14 8 13 rspc2va AXBXyXzXxJyxzxy=zxJAxBxA=B
15 14 ancoms yXzXxJyxzxy=zAXBXxJAxBxA=B
16 3 15 sylan JKol2AXBXxJAxBxA=B